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A three-dimensional computer code has been developed to study the magnetohydro- 
dynamic equilibrium and stability of a diffuse or sharp boundary plasma in toroidal 
geometry. It is shown how equilibria with net toroidal current identically zero can be de 
termined and how growth rates of instabilities can be calculated. Applications are made 
to an I = 2, 3 stellarator configuration that offers the possibility of achieving a critical 
value as high as 10% for the plasma parameter 8. 

1. INTRODUCTION 

We have recently published a book [2] describing a magnetohydrodynamics code 
to compute equilibrium and stability for a plasma in toroidal geometry with significant 
three-dimensional distortions. The principal merit of the code is its ability to resolve 
three-dimensional effects, but because of this it is rather expensive to run. The 
question arises whether physical applications can be found that justify such expensive 
calculations. The model that the code is best suited to analyze is the classical stel- 
larator. In this paper we shall present sample calculations that are relevant to some 
modern stellarator concepts. The physical interest of the results is enhanced by recent 
progress in neutral beam heating which offers the prospect of achieving practical 
stellarator equilibria in the laboratory. 

Classical stellarators with simple I = 2 or 1 = 3 windings do not turn out to 
provide adequate containment when the plasma parameter /I, defined to be the ratio 
between the maximum fluid pressure p and the maximum magnetic pressure B2/2, 
significantly exceeds 2 or 3 %. Because the Maxwell stress tensor is quadratic in the 
components of the magnetic field B, and because comparable quadratic terms appear 
in the stellarator expansion of Greene and Johnson [3], the addition theorem 

2 cos[Z8 - kz] cos[(Z + 1)e - kz] = cos 9 + cos[(21+ 1)e - 2kz] 

for the cosine suggests that a restoring force to balance toroidal drift can be obtained 
by suitably combining I and Z + 1 windings. This twists the magnetic lines nearest 
the principal axis of the torus so that their lengths more evenly match those at the 
outer circumference, which can be chosen to be circular. Such ideas have been used 
to define high-p stellarator equilibria [4]. Unfortunately the large aspect ratios and 
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many periods required to attain really high values of /3 lead to so-called m = 1 
instabilities. These cannot be avoided even by introducing triangular cross sections 
of a kind proposed in some of our earlier publications [2]. However, we shall establish 
that satisfactory intermediate configurations with aspect ratios A on the order of 10 
and with ,8 as large as 10% can be found for stellarators with combined I :-= 2 and 
I = 3 windings. 

Our computer code is the best theoretical tool available to study the I :: 2, 3 
stellarator concept. We have developed a new version that defines equilibria with 
net current I equal to zero on every toroidal flux surface. This requirement is related 
to diffusion phenomena that can be modeled by the code, and it eliminates some 
of the resistive instabilities that plague the Tokamak program. To make a convincing 
case for theorems affirming stability of magnetohydrodynamic modes for the I =-= 2, 3 
stellarator, we have refined our method of determining equilibria and calculating 
growth rates. In the discussion of these improvements of the theory, some familiarity 
with our book [2] and with the notation used there will be assumed. 

In the next section we present a similarity solution of the partial differential 
equations defining magnetohydrodynamic equilibrium that is helpful in validating 
the computer code. It furnishes a check on three-dimensional effects observed in 
calculations of flux surfaces with triangular cross sections. More precisely, for high 
p the triangularity has not been found to decay inside the plasma as rapidly as had 
been expected from potential theory. This observation is confirmed for a long wave- 
length. helically symmetric equilibrium solution where the cross sections all have the 
same shape and for which p = 1 at the magnetic axis. The solution also serves as a 
primeexample with which to assess the accuracy of numerical estimates of growth rates. 

The analysis of stability by numerical methods is strongly influenced by truncation 
errors. Some of these take the form of additional constraints due to discretization, 
and they have a stabilizing effect comparable to that of finite Larmor radius. Others 
behave more like artificial resistivity due to numerical relaxation of flux constraints, 
but their destabilizing effect can be significantly greater than that of the physical 
resistivity. In practice we have found that to test stability in a reliable way with our 
code it is necessary to calculate growth rates of the discrete model with extreme 
accuracy and then extrapolate carefully to the limit of zero mesh size. In this paper 
we shall present a new procedure for estimating discrete growth rates which is related 
to the classical Rayleigh-Ritz method of computing eigenvalues. More specifically, 
we represent growth rates in terms of shifts in the potential energy by formulas quite 
analogous to those appearing in the standard variational principle of magnetohydro- 
dynamics [3]. This approach turns out to have a decisive advantage over estimates 
based on Fourier analysis of time-dependent processes. 

In the final section of the paper the question of which configuration might lead to 
the largest critical value of /3 is considered subject to the requirement of zero net 
current. The I = 2, 3 stellarator seems to be the best model we know of at this time. 
Comparisons are made with experimental data, notably with those that are available 
for the Proto-Cleo stellarator [5], in order to substantiate conclusions based on the 
theory. 
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2. MAGNETIC FLUX SURFACES WITH TRIANGULAR CROSS SECTIONS 

Our computations of the toroidal equilibrium of a high-/3 plasma whose flux surfaces 
have triangular cross sections exhibit remarkable penetration of the triangularity 
into the plasma. Motivated by this observation, we seek similarity solutions of the 
equilibrium equations such that all cross sections have the same shape. Helically 
symmetric equilibria that we shall obtain in this fashion serve to check the accuracy 
of the calculations. The information they provide about growth rates is especially 
important because that is the area where the most troublesome questions about 
resolution arise. 

Our point of departure is the partial differential equation 

xxx + xry = ax”, 

which describes a family of straight cylindrical equilibria in two dimensions. Contrary 
to usual practice, we shall allow the exponent 01 to be fractional. Separating variables 
in polar coordinates r and 0 and putting 01 = (n - 2)/n and a == n2, we find that 
there are solutions of the form 

x = r”E1 +.fm 

where f satisfies the ordinary differential equation 

f” + n2(1 + f) = $(I +f)(n-B)‘n. 

This equation has periodic solutions with the period 27~ for appropriate choices of 
the eigenvalue parameter n. In particular, if the amplitude off is small, the equation 
can be linearized so that it reduces to 

f"+-Pf=o 

with l2 = 2n. Here the periodic solutions are cos 10 and sin 18 with integral 1. 
The case I = it = 2 is classical and corresponds to flux surfaces with elliptical 

cross sections. More interesting from our point of view is the case I = 3, IZ = 9/2, 
which yields flux surfaces x = const. that all have similar triangular cross sections. 
For this example, which has no physical singularity at the origin, we have obtained 
excellent agreement with runs of the computer code. It follows that the coordinate 
system on which the code is based gives adequate resolution at the magnetic axis. 

To arrive at comparable similarity solutions with more complicated geometry in 
three dimensions, let us consider the partial differential equation 

la rxr 
r ar 1 + k2r2 + f xee + (1 3r2)2 +&+ lF$r2] =o 

for helically symmetric equilibria (cf. [3]). Here x = x(r, 0 - kz) is a flux function 
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of the cylindrical coordinates r, 8, and Z, while p = p(x) is the pressure and 
B, = B,(X) is the component of the magnetic field parallel to the lines of helical 
symmetry. 

For a later application we note that the equation has vacuum field solutions of the 
form 

x(r, 19) = g(r) + h(r) cos 10 

that define nested families of cylindrical flux surfaces between which lie islands 
surrounded by a separatrix of higher topological structure. Such examples indicate 
that it is naive to assume the existence of nested toroidal flux surfaces sweeping out a 
vacuum magnetic field that is bounded by perfectly conducting tori. However, such 
an assumption can be justified for discrete models whose resolution is anyhow 
inadequate to describe finer structure of the solution. This problem will be discussed 
in more detail in another publication. 

At present we are concerned with the long wavelength model obtained by neglecting 
terms in k2r2. In that limiting case equilibria can be found by setting 

p + JB”, = const. 

and solving the reduced partial differential equation 

Xrr + ; XT + f xss = -2B* f r2B,B;. 

By putting 

B, = -,,Xfn-2)ln 

and separating variables, we see that there are similarity solutions of the same form 

x = rn[l +f(S - kz)] 

as before, but with f satisfying the new ordinary differential equation 

f” + n2(1 +f) = 2n(l +f)(-)~fl + n(n - 2)(1 +f)(-lm. 

Again we consider the linearized version of the eigenvalue problem defining periodic 
solutions. Now the integer 1 associated with the eigenfunctions is related to the 
exponent n by the rule 

4(n - 1) = 12. 

The simplest choice I = n = 2 corresponds to constant pressure ‘and zero current. 
It leads to a classical I = 2 stellarator field that is useful for validation of the computer 
code in three dimensions. However, we shall concentrate here on the less familiar 
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case 1 = 3, n = 13/4, which provides the desired example of an equilibrium with 
Prn;lJr at the magnetic axis and with triangular cross sections whose shapes are all 

The plots shown in Fig. 1 represent four different cross sections of magnetic flux 
surfaces from one run of our computer code for the similarity solution with I = 3 
and with the amplitude off approximately equal to 0.5. The similarity of the shapes 
helps to validate the code in the case of fully three-dimensional calculations. 

FIG. 1. Cross sections of the similarity solution. 

For large /3 more generally there is a certain resonance of the triangularity that 
enables it to penetrate the plasma in an unexpected fashion. We have studied solutions 
of this kind numerically in connection with high-p stellarator applications of the code. 
To test our conclusions we shall undertake next to examine the stability of the simi- 
larity solution. 

The classical variational principle of magnetohydrodynamics asserts that an 
equilibrium is stable if the second variation 

SW = 4 j- [I 42 + J x 45 * v>l” + ‘YP I V * t I2 + K I t - v I”] d7 

of the potential energy is positive for all nontrivial choices of an infinitesimal dis- 
placement f of the plasma [3]. Here y is the adiabatic exponent, v is the normal to a 
nested family of flux surfaces, J = V x B is the current density, Q = V x (6 x B) 
is the first variation of the magnetic field B, and 

B2K = -VP . V(2p + B2) - (J . B)2 + (J . B)(B x v) * V x (B x v). 
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Growth rates iw of unstable modes are defined by extrema of the Rayleigh quotient 

d-q& 

Let us represent the magnetic field of the similarity solution as a cross product 

B = Vs x Vc,4 

of Clebsch potentials, where s is a toroidal flux function characterizing nested flux 
surfaces s = const., and $J is a multiple-valued flux function whose period in the 
toroidal direction reduces to the rotational transform p = p(s) of the equilibrium, 
which is constant. It can be shown that without changing the lead term in 6 W, an 
alteration in p’ = p’(x) of the order k2f 2 and proportional to x(+-$)ln can be intro- 
duced which makes either p or the net current I vanish identically. Thus it suffices 
to carry out the stability analysis of the similarity solution in the simplest case p = 0. 

It turns out that s is proportional to x and that # differs from 0/27r by a function of 
19 - kz. The infinitesimal displacement f of the plasma satisfies the relation 

where SI,/J and Ss are the first variations of the flux functions # and s. To study the 
m = 1 modes we consider special variations given by 

81) = a(s) sin 24, 6s = b(s) cos 2n*, 

which are admissible because p = 0. A lengthy calculation then shows that the 
second variation of the potential energy has a lead term of the form 

,SjW = _ 4(n - 2)(n2 + 3n - 5, 
n2 s 

k2f2b2 cos2 8 d 7. 

Thus when n > 2 the similarity solution is unstable to a wide class of m = 1 pertur- 
bations with more or less arbitrary dependence on the radial coordinate s. 

The instability of the long wavelength similarity solution casts doubt on contro- 
versial results we announced earlier concerning stability of high-/3 stellarator equilibria 
with triangular cross sections [I, 21. Here we observe that instability prevails even 
when the plasma is bounded by a perfectly conducting outer flux surface on whic.h the 
pressure does not vanish. Thus wall stabilization fails in the present case of triangular 
cross sections with ,6 = 1 at the magnetic axis. Finally, note that by solving an 
analytic Cauchy problem we can convert such an outer flux surface into the free 
boundary of a more general model of the equilibrium. 
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3. MAGNETOHYDRODYNAMIC GROWTH RATES 

Our computer code is based on a discrete version of the variational principle for 
the potential energy 

E= 

in magnetohydrodynamics [2]. The magnetic field B is represented in terms of two 
Clebsch flux functions s and +, 

The first of these is single valued and defines a nested family of toroidal flux surfaces 
s = const. The second is given by the formula 

where u and v are poloidal and toroidal coordinates with unit periods and h is single 
valued. The pressure p is related to the density p by the equation of state p = py, 
and the mass M(s) inside each flux surface s = const. is prescribed. So also is the 
rotational transform TV = &s), which specifies the flux constraints of the problem. 
Only equilibria with constant pressure on each flux surface s = const. are computed. 
They are considered to be stable whenever E has a relative minimum. 

In order to treat the question of stability adequately from the point of view of 
numerical analysis, it is necessary to compute growth rates on fixed meshes and then 
extrapolate their values to zero mesh size. Because we use the variational principle, 
a convenient procedure to estimate growth rates can be built around the formula of 
Section 2 involving the Rayleigh quotient. We proceed to describe an algorithm for 
the numerical implementation of this idea that has been incorporated in our computer 
code. 

Let $J~ represent an equilibrium at which E = E(#) becomes stationary as a 
functional of I# and the other unknowns, and let a test function #kmn corresponding 
to a given mode of perturbation of the flux function $,, be assigned. We consider the 
problem of minimizing the difference 

6~’ = EC+> - EC&d 

subject to the constraint that the scalar product 

has a fixed amplitude. The value of the Rayleigh quotient 

w2 = EC+) - E(b) 
.I- ~5’ dT 
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corresponding to the extremal function $ for this problem defines a growth rate 
associated with the equilibrium I,& and the test function z,&~. The norm in the 
denominator can be estimated by means of the approximate formula 

(” = (&,b Vs - 6s V$)2/B2, 

which is suggested by the analysis in Section 2. 
Our choice of a norm and of a scalar product here are adequate for the study of 

gross m = 1 modes. In this case it also suffices to use for I,&~ only the lead term in a 
Fourier expansion with respect to the variables s, U, and U, despite the presence of 
small sidebands associated with toroidal geometry. However, for higher modes it 
becomes necessary to refine both the formula for the norm and the choice of #,,, . 

Because 6 W scales locally like c2, the values of w2 computed above are essentially 
independent of the amplitude of (C/J - &, , $rkmn) in practice. Like the Rayleigh- 
Ritz principle, the method works well when $I. kmn is a good approximation to some 
preferred mode because it then gives an even better approximation to the corre- 
sponding growth rate. More reliable estimates of growth rates are obtained than can 
be found by fitting exponentials to quantities depending on the artificial time para- 
meter that occurs in our highly accelerated iterative scheme for the solution of the 
minimum problem [2]. 

An expansion of S# = $J - Q!J,, in eigenfunctions shows that our procedure leads to 
negative values of 6 W predicting instability whenever an equilibrium I,& is unstable 
for a mode to which the test function #Rmn is not orthogonal. The accuracy of the 
estimate of the corresponding growth rate is enhanced by its stationary dependence 
on the choice of the test function, as can be seen from related examples in linear 
algebra. However, for a diffuse plasma without sharp boundary our finite-difference 
scheme always furnishes numerical results that represent lower bounds on the exact 
growth rates of physical instabilities. Hence it is advisable to compare answers at 
several mesh sizes if one wishes to conclude that an equilibrium is stable. 

The method we have described enables one to calculate a growth rate associated 
with any test function #kmn . The success of the procedure for a specific mode depends 
on one’s ability to select the test function appropriately. For many applications in 
magnetohydrodynamics the choice of $kma is straightforward. It is even possible to 
estimate growth rates directly for modes with higher values of the wave numbers k 
and m in the toroidal and poloidal directions. Moreover, information about nonlinear 
saturation of unstable modes can be obtained by examining the behavior of w2 when 
the amplitude of ($ - Z/J,, , #kmn) becomes large. 

The Rayleigh quotient effectively scales the Alfven speed out of the formula for the 
growth rate. This is important because we have avoided solving the full system of 
time-dependent partial differential equations of magnetohydrodynamics. What 
matters most in settling questions of stability is the sign of the difference E(#) - E(&,). 
The accuracy of the calculations is found to be just as good for small p as it is for 
large /3, and our code is one of the few theoretical tools that are available in an inter- 
mediate range. 
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From a run on a typical mesh we obtain in practice values of E accurate to seven 
significant figures. These may result after subtraction in estimates of growth rates 
that have three significant figures. However, a further loss of significance is usually 
encountered in passing to the limit of zero mesh size. 

FIG. 2. Growth rates of tn = 1 modes. 

A: p = O,fl = 0.7OO,A, = -0.15, A, = 0.00,~ = 0; 
B: Z = 0,/3 = 0.001, A, = -0.30, A, = 0.00, E= 0; 
c: p = 0, b = 1.00, A, = 0.00, A, = 0.15, l = 0; 
D: p = 0,/3 = 0.7OO,A, = 0.00, A, = 0.15, E = 0; 
E: Z = 0,/3 = 0.001, A, = 0.00, A, = 0.15, E = 0; 
F: Z = 0, /3 = 0.076, A, = -0.15, A, = 0.15, E = 0.1; 
G: same as F except k = 1113 for full torus. 

The computer code has been used to calculate growth rates of the m = 1 mode for 
the similarity solution introduced in Section 2. Some of the results for 6 Ware plotted 
against the square of the mesh size h in Fig. 2. The value h = 1 is identified with a 
mesh of 6 intervals in the radial direction and 12 intervals each in the poloidal and 
toroidal directions. Because the computations turn out to be second order accurate, 
we have used least squares to plot a parabola through the data for each growth rate 
in the plane of h2 and 6 W. In our labeling of the curves, the parameters da refer to the 
shape of a perfectly conducting outer wall whose cross sections are defined by a 
standard formula 

reie = [l - d, cos 27rv - d, cos 2+3u - v)] e2niu + dle2ni*J - dZe-2ni(u-v) 

from [2]. 
The data plotted on curve A indicate that for 1 = 2 windings alone it is not necessary 

to extrapolate to zero mesh size to encounter instability. The truncation error is 
substantially bigger for the case I = 3 of triangular cross sections, but it remains of 
the order h2. Curve C represents the example of the similarity solution, which becomes 
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unstable on a mesh of 10 x 18 x 18 points. The error has stabilized all the other 
runs shown in Fig. 2 that had triangular cross sections. Actually this is a situation 
ideal for application of the present method because it facilitates computation of the 
extremal values E($) and E(&,) of the energy that occur in the formula for SW’. 

The data for curve D were obtained with the same triangularity, the same rotational 
transform, and the same pressure profile as for the similarity solution, but with 
a lower value of /3 = 0.7 at the magnetic axis. This example was stable on each of the 
meshes used in the computation, but extrapolation to zero mesh size shows it to be 
unstable. Such cases have led us in the past to the overly optimistic view that triangular 
cross sections might stabilize high-p stellarator equilibria [2]. 

A better understanding of the situation occurring here will follow from a discussion 
of the results plotted on curve E. In this case an equilibrium with the same triangularity 
as before, but with relatively small p == 0.001 and with net current I : 0, is shown 
to be stable to the m = I, k = 0 mode by a margin in SW that is narrow but 
acceptable numerically. Results equivalent to those plotted on curve E are obtained 
for the Proto-Cleo stellarator, which is stable enough to maintain the plasma in 
equilibrium for a large fraction of a second [5]. On the other hand, the internal m = 1, 
k = 0 mode is found to be neutral from similar runs with I =- 0 for a pressure profile 
defined initially by the formula 

p =:- 0.35(1 - Y2)9 

and used in [2] to model the INTEREX experiment at the Max Planck Institute for 
Plasma Physics at Garching, which has a compression ratio between 3 and 4 with 
/3 = 0.7. This is not entirely inconsistent with the results presented in [2] for a related 
but different free-boundary mode, which was found to be stable. 

It must be emphasized that accompanying the large triangularity d, that occurs 
in these examples there is so much self-inductance of the equilibrium that a significant 
difference arises between the normalizations p ~5 0 and I = 0. It is only the cases 
with zero net current that may be expected to be stable, but they entail such large 
rotational transforms that stability of the Kruskal-Shafranov kink mode can only 
be achieved for smaller numbers of periods and smaller aspect ratios than were 
contemplated in the high-p stellarator program. The outcome of our investigation is 
that stability of the m = 1 mode is primarily controlled by familiar properties of the 
rotational transform p”, which should remain safely inside the interval 0 < p < I. 
Such a restriction is impossible to meet for both a single period and the full torus in 
cases with very large aspect ratios, which are therefore excluded. Thus stability 
prevails only for moderate values of j3. 

It should be noted that in our calculations of growth rates for internal m = 1 
modes we have found that reasonable accuracy is only achieved by using relatively 
fine meshes in the direction of the toroidal coordinate U. Some of our earlier work was 
inadequate in that respect because we attempted to include both I = 1 and I = 3 
windings and to model unnecessarily complicated radial effects all within the scope 
of one lengthy three-dimensional computation. 
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4. THE I= 2,3 STELLARATOR 

We turn our attention to the question of whether three-dimensional geometry can be 
used to obtain magnetohydrodynamic equilibria with decisively advantageous 
properties. Tokamak equilibria, which are axially symmetric, suffer from various 
resistive and ideal magnetohydrodynamic instabilities associated with the net current 
needed to balance toroidal drift. The corresponding reactor concept has the unfor- 
tunate property that it is pulsed. On the other hand, in stellarators the 
three-dimensional geometry of helical windings is used to compensate for toroidal 
drift while maintaining zero net current, so that these disadvantages are eliminated. 

We shall apply our computer code to search for stellarator equilibria that have as 
high a critical value of p as possible. To suppress resistive instabilities we impose the 
requirement I = 0 on the net current, and we also ask that the principal m = 1 modes 
of ideal magnetohydrodynamics be stable. Thus steady-state operation can be 
envisioned. 

The condition I = 0 is related to problems of resistivity and diffusion. The diffusion 
equation for the magnetic field B in the case of finite scalar conductivity CJ is 

which implies for fixed p that 

crEt = BABdr = - (VB)2di- < 0 
s s 

if contributions from the boundary are suppressed. Since the physical time scale for 
this equation is much slower than that of ideal magnetohydrodynamics, it is reasonable 
to represent the process of diffusion by a one-parameter family of equilibria. The 
method of steepest descent on which our code is based therefore suggests that we 
model diffusion crudely by minimizing the energy E with respect to the mass function 
M(s) and the rotational transform p(s), which are the essential input data of the code. 
Assuming p to be relatively small, or the mass to be in a steady state, we choose to 
neglect any changes in M(s). 

Ifs itself represents the toroidal flux and F(s) stands for the poloidal flux, so that 
p = F’(s), then an application of the calculus of variations shows that the change in 
the energy due to a perturbation SF of the poloidal flux is given by the simple formula 

6E = - j dFdf(s) = j I ap ds. 

We therefore propose to introduce the equation 

aFt = Z’(s) 

for a path of steepest descent of E as a primitive model of diffusion. Since I scales 
like p = F’, we have here an analog of the heat equation Ft = F”. In particular, 
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when the total poloidal flux F(1) - F(0) is fixed, then our model predicts that the net 
current I will diffuse toward the magnetic axis, raising the level of TV there. Such a 
phenomenon is observed experimentally and has damaging consequences for the 
Tokamak concept. 

The minimum of E with respect to F is achieved for constant net current I = I(s). 
In particular, relinquishing the boundary conditions on F and minimizing directly 
with respect to p gives I = 0. This suggests a simpler iterative scheme to drive I 
to zero that we can describe in terms of an artificial time parameter t by the equation 

The most natural way to implement the scheme in our code is by minimizing the 
discrete approximation to E with respect to the values of ~1 at mesh points. We have 
coded such a procedure and have found it to work remarkably well in practice. 
It provides an improvement of our theory that is essential for the study of stellarators. 
However, a word of caution is called for if it is proposed to calculate vacuum fields 
by driving I to zero in a pressureless plasma. The counterexample of Section 2 
concerning nested families of flux surfaces indicates that only weak solutions of this 
problem can be expected to exist, and they may be interspersed with islands and 
current sheets modeling the higher topological structure of the magnetic lines in the 
vacuum. 

The windings of a classical stellarator are associated with a single poloidal multi- 
plicity Z, which usually has the value I = 2 or I = 3. The effect of the windings is to 
produce a rotational transform that stabilizes the plasma. This stabilization is enough 
to compensate for toroidal drift when p is no bigger than 2 or 3 ‘4. However, for 

R 

BETA:.076.A,: .OO 

BETA=.001 .A2= .OO 
BETR=.O76.A,=-.I5 

EETR=.001.A2=-.15 

FIG. 3. Equilibria of the I = 2, 3 stellarator. 

z = 0; A, = 0.15; E = 0.1; QLZ = 13. 
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larger values of /? it becomes necessary to introduce another mechanism providing 
more restoring force so that the plasma will remain adequately centered within the 
containing coils. This can be achieved by combining I and I + 1 windings as indicated 
in Section 1. In an intermediate range of p, and at lower and more practical aspect 
and compression ratios, the I = 0, 1 combination used in the Scyllac project turns 
out to be ineffectual. From runs of the computer code it appears that the configuration 
leading to the highest permissible critical value of /3 is an I = 2, 3 stellarator. The 
latter configuration has a desirable distribution of rotational transform both for 
equilibrium and for stability. 

In Fig. 3 we present numerical results for a selection of stellarator equilibria that 
have been calculated subject to the requirement Z = 0 of no net current. In order to 
estimate the location of the magnetic axis we have plotted a dimensionless coordinate 
r as a function of the mesh size h, which is normalized as in Fig. 2. The quantity r, 
which measures average distance from the center of the coils in units of the wall 
radius and is oriented to increase in the outward direction, is found to be only first 
order accurate. Hence to extrapolate to zero mesh size we fit parabolas in the (h, r)- 
plane by least squares through data from five different grids. 

It can be seen that an I = 3 winding alone with d, = 0.15 yields an acceptable 
equilibrium for /3 = 0.001, whereas to contain a plasma with the larger value 
/3 = 0.076 we have had to include both I = 2 and 1 = 3 windings with A, = -A, = 
0.15. In the case of the latter geometry the magnetic axis moves continuously outward 
over a physically reasonable range of r as p increases from 0.001 to 0.076. It is 
remarkable that even in a vacuum the I = 2, 3 stellarator field shifts the magnetic 
axis significantly inward. This can be verified independently by using the sharp 
boundary version of the code. The initial values of the pressure profile for the com- 
putations were of the form 

p = po( 1 - r2)” 

with N = 2, but the solution was found to be relatively insensitive to the exponent N. 
The aspect ratio of the outermost flux surface, which we may interpret as a separatrix, 
was l/EP = 10, and there were QLZ = 13 periods of the windings. 

Curve F in Fig. 2 displays data for the m = 1, k = 0 growth rate of the 1 = 2, 3 
stellarator we have described. Corresponding data for the Kruskal-Shafranov mode 
of the full torus with 13 periods, which we refer to as the m = 1, k = l/13 mode, are 
presented on curve G. The run on the finest grid for this case, which consisted of 
10 x 18 x 234 mesh points, was performed on the CRAY computer at the National 
Magnetic Fusion Energy Computer Center. It took 2 hr of machine time for 2500 
iterations. Extrapolation to zero mesh size shows that the equilibrium is stable to 
both m = 1 modes with approximately equal margins that are safe from the 
standpoint of numerical errors. For larger choices of k we found 6 W to be even 
bigger. These favorable stability results can be attributed to the fact that with Z = 0 
the rotational transform for the full torus came out in the interval 0.4 f ZJ < 0.8. 
Growth rates of equilibria with I = 0 are, of course, calculated with p fixed. 
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For both equilibrium and stability it is to be observed that on any fixed mesh crude 
enough to be feasible in practice most of the calculations turn out to be misleading. 
It is only after appropriate extrapolations to zero mesh size have been performed that 
physically significant conclusions can be drawn. Unless care is exercised in this 
matter it is all too easy to fall into the temptation of believing that stable equilibria 
exist with unrealistically high values of p. 

Further calculations have shown that somewhat higher /I might be achieved by 
passing to 1 = 2, 3 stellarators with other choices of d, , d, , EP, and QLZ. However, 
there is small prospect of reaching critical values of /I much above 10 %. For purposes 
of comparison we have also studied 1 = I,2 stellarator configurations. They produce 
a maximum /3 of little more than 5 %, but their mathematical theory does have the 
advantage that the truncation error for m = 1 growth rates is considerably reduced. 
This is reflected in the flat slopes of curves A and B in Fig. 2. Higher choices of the 
poloidal multiplicity I seems to be inappropriate because the effect of the windings 
decays too rapidly in both the vacuum and the plasma regions. Perhaps the least 
attractive possibility is the I = 0, 1 stellarator, which has little self-inductance. In 
this connection we mention that for higher p the Elmo Bumpy Torus (EBT) can be 
interpreted in our model as an 1 = 0 stellarator with equal but opposite I = + 1 and 
1 = -1 sideband fields whose rotational transforms just cancel each other out. 
However, important physical phenomena are ignored in such a model. 

The apparent success of the I = 2,3 stellarator concept is an outgrowth of our 
optimistic theory about stability for equilibria with triangular cross sections [2]. To 
establish more confidence in the physics of our conclusions it is worthwhile to point 
out that good agreement of the calculations is obtained with experimental data for 
the Proto-Cleo stellarator [5]. This is shown by curve E in Fig. 2 and the example 
p = 0.001 and A, = 0 in Fig. 3, which serve to model Proto-Cleo data. If the 
INTEREX experiment at Garching is completed it may shed further light on the 
situation. Ultimately we hope that an I = 2, 3 stellarator experiment will be con- 
structed using our theory and computer code as a guide. 

Higher modes, especially those with m = 2, can be studied by a refinement of the 
techniques we have described. It is possible to treat nonlinear saturation of insta- 
bilities and bifurcated equilibria, too (cf. [2]). However, ballooning modes have not 
yet been examined by the method because of limitations on computer capacity for 
three-dimensional calculations. There is some prospect that they may be less dangerous 
for the I = 2, 3 stellarator anyway because the aspect ratio is large and the plasma 
is well centered inside the coils. 

In closing we mention that we have used the code to make preliminary estimates 
of the critical /3 for a Tokamak of aspect ratio four with realistic profiles for the 
pressure and the rotational transform. A value exceeding 5 % has been obtained, 
which is in the range of our I = 2, 3 stellarator data and of the most recent experi- 
mental results. 
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